Prognostic modelling with logistic regression analysis: a comparison of selection and estimation methods in small data sets.

نویسندگان

  • E W Steyerberg
  • M J Eijkemans
  • F E Harrell
  • J D Habbema
چکیده

Logistic regression analysis may well be used to develop a prognostic model for a dichotomous outcome. Especially when limited data are available, it is difficult to determine an appropriate selection of covariables for inclusion in such models. Also, predictions may be improved by applying some sort of shrinkage in the estimation of regression coefficients. In this study we compare the performance of several selection and shrinkage methods in small data sets of patients with acute myocardial infarction, where we aim to predict 30-day mortality. Selection methods included backward stepwise selection with significance levels alpha of 0.01, 0.05, 0. 157 (the AIC criterion) or 0.50, and the use of qualitative external information on the sign of regression coefficients in the model. Estimation methods included standard maximum likelihood, the use of a linear shrinkage factor, penalized maximum likelihood, the Lasso, or quantitative external information on univariable regression coefficients. We found that stepwise selection with a low alpha (for example, 0.05) led to a relatively poor model performance, when evaluated on independent data. Substantially better performance was obtained with full models with a limited number of important predictors, where regression coefficients were reduced with any of the shrinkage methods. Incorporation of external information for selection and estimation improved the stability and quality of the prognostic models. We therefore recommend shrinkage methods in full models including prespecified predictors and incorporation of external information, when prognostic models are constructed in small data sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)

Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes.  Small area estimation is needed  in obtaining information on a small area, such as sub-district or village.  Generally, in some cases, small area estimation uses parametric modeling.  But in fact, a lot of models have no linear relationship between the small area average and the covariat...

متن کامل

Sample size determination for logistic regression

The problem of sample size estimation is important in medical applications, especially in cases of expensive measurements of immune biomarkers. This paper describes the problem of logistic regression analysis with the sample size determination algorithms, namely the methods of univariate statistics, logistics regression, cross-validation and Bayesian inference. The authors, treating the regr...

متن کامل

Selection of Variables that Influence Drug Injection in Prison: Comparison of Methods with Multiple Imputed Data Sets

Background: Prisoners, compared to the general population, are at greater risk of infection. Drug injection is the main route of HIV transmission, in particular in Iran. What would be of interest is to determine variables that govern drug injection among prisoners. However, one of the issues that challenge model building is incomplete national data sets. In this paper, we addressed the process ...

متن کامل

Factors Influencing Drug Injection History among Prisoners: A Comparison between Classification and Regression Trees and Logistic Regression Analysis

Background: Due to the importance of medical studies, researchers of this field should be familiar with various types of statistical analyses to select the most appropriate method based on the characteristics of their data sets. Classification and regression trees (CARTs) can be as complementary to regression models. We compared the performance of a logistic regression model and a CART in predi...

متن کامل

Comparing Discriminant Analysis, Ecological Niche Factor Analysis and Logistic Regression Methods for Geographic Distribution Modelling of Eurotia ceratoides (L.) C. A. Mey

Eurotia ceratoides (L.) C. A. Mey is an important plant species in semi-arid landsin Iran. New approaches are required to determine the distribution of this plant species. Forthis reason, geographical distributions of Eurotia ceratoides were assessed using threedifferent models including: Multiple Discriminant Analysis (MDA), Ecological Niche FactorAnalysis (ENFA) and Logistic Regression (LR). ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistics in medicine

دوره 19 8  شماره 

صفحات  -

تاریخ انتشار 2000